首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11627篇
  免费   2672篇
  国内免费   3153篇
地球科学   17452篇
  2024年   29篇
  2023年   190篇
  2022年   555篇
  2021年   657篇
  2020年   484篇
  2019年   635篇
  2018年   703篇
  2017年   687篇
  2016年   747篇
  2015年   649篇
  2014年   815篇
  2013年   766篇
  2012年   828篇
  2011年   848篇
  2010年   895篇
  2009年   779篇
  2008年   764篇
  2007年   669篇
  2006年   585篇
  2005年   469篇
  2004年   389篇
  2003年   394篇
  2002年   348篇
  2001年   361篇
  2000年   340篇
  1999年   415篇
  1998年   343篇
  1997年   323篇
  1996年   262篇
  1995年   283篇
  1994年   245篇
  1993年   237篇
  1992年   164篇
  1991年   104篇
  1990年   85篇
  1989年   88篇
  1988年   82篇
  1987年   63篇
  1986年   41篇
  1985年   22篇
  1984年   19篇
  1983年   14篇
  1982年   20篇
  1981年   12篇
  1980年   17篇
  1979年   5篇
  1977年   4篇
  1976年   3篇
  1958年   8篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
1.
2.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   
3.
东昆仑夏日哈木地区首次发现了早泥盆世二长花岗岩,对其开展年代学和地球化学特征研究,进一步探讨其岩石成因和构造地质背景。二长花岗岩锆石U-Pb年龄为(412.1±5.7) Ma(MSWD=0.95),形成于早泥盆世早期; 岩石为过弱铝质亚碱性花岗岩,富SiO2(含量为71.41%~72.46%)、K2O(含量为5.27%~6.16%),贫Fe2O3(含量为1.86%~2.05%)、P2O5(含量为0.08%~0.12%),富集轻稀土元素,具明显的负Eu异常; 在原始地幔标准化微量元素蛛网图上可以看出,岩石明显富集Rb、Th、Zr、Hf,强烈亏损Nb、Sr、P、Ti、Ba。夏日哈木地区二长花岗岩属于I型花岗岩,其源岩可能由幔源岩浆底侵加热下地壳岩石致其部分熔融而形成,处于由同碰撞向后碰撞转换的构造环境,说明东昆仑夏日哈木地区在早泥盆世早期已进入伸展阶段。  相似文献   
4.
长江河口潮波传播机制及阈值效应分析   总被引:1,自引:0,他引:1  
河口潮波传播过程受沿程地形(如河宽辐聚、水深变化)及上游径流等诸多因素影响,时空变化复杂。径潮动力非线性相互作用研究有利于揭示河口潮波传播的动力学机制,对河口区水资源高效开发利用具有重要指导意义。本文基于2007—2009年长江河口沿程天生港、江阴、镇江、南京、马鞍山、芜湖的逐日高、低潮位数据及大通站日均流量数据,统计分析不同河段潮波衰减率与余水位坡度随流量的变化特征,结果表明潮波衰减率绝对值与余水位坡度随流量增大并不是单调递增,而是存在一个阈值流量和区域,对应潮波衰减效应的极大值。为揭示这一阈值现象,采用一维水动力解析模型对研究河段的潮波传播过程进行模拟。结果表明,潮波传播的阈值现象主要是由于洪季上游回水作用随流量加强,余水位及水深增大,导致河口辐聚程度减小,而余水位坡度为适应河口形状变化亦有所减小,从而形成相对应的阈值流量和区域。  相似文献   
5.
The forest litter is an essential reservoir of nutrients in forests, supplying a large part of absorbable base cations(BC) to topsoil, and facilitating plant growth within litter-soil system. To characterize elevational patterns of base cation concentrations in the forest litter and topsoil, and explore the effects of climate and tree species, we measured microclimate and collected the forest litter and topsoil(0-10 cm) samples across an elevational range of more than 2000 m(1243 ~ 3316 m a.s.l.),and analyzed the concentrations of BC in laboratory. Results showed that: 1) litter Ca concentration displayed a hump-shaped pattern along the elevational gradients, but litter K and Mg showed saddle-shaped patterns. Soil Ca concentration increased with elevation, while soil K and Mg had no significant changes. 2) Ca concentration in the forest litter under aspen(Populus davidiana) was significantly higher than that in all other species, but in topsoil, Ca concentration was higher under coniferous larch and fir(Larix chinensis and Abies fargesii). Litter K and Mg concentrations was higher under coniferous larch and fir, whereas there were nosignificant differences among tree species in the concentrations of K and Mg in topsoil. 3) Climatic factors including mean annual temperature(MAT), growing season precipitation(GSP) and non-growing season precipitation(NGSP) determined BC concentrations in the forest litter and topsoil. Soil C/N and C/P also influenced BC cycling between litter and soil. Observation along elevations within different tree species implies that above-ground tree species can redistribute below-ground cations, and this process is profoundly impacted by climate. Litter and soil Ca, K and Mg with different responses to environmental variables depend on their soluble capacity and mobile ability.  相似文献   
6.
Transverse isotropy with a vertical axis of symmetry is a common form of anisotropy in sedimentary basins, and it has a significant influence on the seismic amplitude variation with offset. Although exact solutions and approximations of the PP-wave reflection coefficient for the transversely isotropic media with vertical axis of symmetry have been explicitly studied, it is difficult to apply these equations to amplitude inversion, because more than three parameters need to be estimated, and such an inverse problem is highly ill-posed. In this paper, we propose a seismic amplitude inversion method for the transversely isotropic media with a vertical axis of symmetry based on a modified approximation of the reflection coefficient. This new approximation consists of only three model parameters: attribute A, the impedance (vertical phase velocity multiplied by bulk density); attribute B, shear modulus proportional to an anellipticity parameter (Thomsen's parameter ε−δ); and attribute C, the approximate horizontal P-wave phase velocity, which can be well estimated by using a Bayesian-framework-based inversion method. Using numerical tests we show that the derived approximation has similar accuracy to the existing linear approximation and much higher accuracy than isotropic approximations, especially at large angles of incidence and for strong anisotropy. The new inversion method is validated by using both synthetic data and field seismic data. We show that the inverted attributes are robust for shale-gas reservoir characterization: the shale formation can be discriminated from surrounding formations by using the crossplot of the attributes A and C, and then the gas-bearing shale can be identified through the combination of the attributes A and B. We then propose a rock-physics-based method and a stepwise-inversion-based method to estimate the P-wave anisotropy parameter (Thomsen's parameter ε). The latter is more suitable when subsurface media are strongly heterogeneous. The stepwise inversion produces a stable and accurate Thomsen's parameter ε, which is proved by using both synthetic and field data.  相似文献   
7.
Wang  Yaji  Gao  Lei  Peng  Xinhua 《中国科学:地球科学(英文版)》2019,62(11):1730-1743
The impacts of hydrological processes on N loss is of great value to understand the N transport at catchment scale,which is far from clear. Rainfall, soil water, groundwater and stream water and their N concentrations were monitored from March 2017 to February 2018 in Sunjia agricultural catchment of the red soil critical zone. Objectives of this study were:(1) to determine the dynamics of N concentration of different waters and their N loads;(2) to assess their contributions to N load of streamflow in the paddy and upland mixed agricultural catchment. Our results showed that the N concentrations of soil water(4.8 mg L~(-1)) and groundwater(6.0 mg L~(-1)) were the highest, approximately 2 to 5 times higher than those of stream water(2.7 mg L~(-1)), rain water(1.7 mg L~(-1)) and irrigation water(1.2 mg L~(-1)). The N net loss of the catchment(38.2 kg ha~(-1) yr~(-1))accounted for 15% of the total fertilizer N input. Rainy season(April–June) was a high-risk period of N loss, contributing to more than one third of the total annual loss amount. Using end-member mixing analysis model(EMMA), we found groundwater(whose discharge accounted for 25% of the catchment streamflow) was an important source for the N loss in the agricultural catchment. Even in this catchment with coexisting upland and paddy field ecosystems, identified end-members could be used to predict the N load well(R~20.87, p0.001). These results can deepen our understanding of the relationship between hydrological process and N transport in the red soil critical zone and are also helpful to improve the water and fertilizer management in subtropical agricultural catchment.  相似文献   
8.
分别构建广州主建成区垂直比例尺为1﹕2 000、1﹕1 000和1﹕500的3个建筑物模型,利用大型边界层风洞,在西北和东南两风向下,基于中性流模拟分析了复杂城市地形下湍流度随高度的变化及其对宏观地形的依赖。结果表明:风廓线指数α与不同高度的湍流度之间的关系密切,利用现有模型,根据4类粗糙度边界层和不同垂直比例尺,可确定相应的湍流度随高度变化模型的主要系数,预测精度高。城市地形下最大湍流度面发育在0~0.2 h之间狭窄的范围内。用湍流度形态指数β来表征湍流度随高度的变化,无论城市屋脊还是平坦地形,随着风程区的延伸,廓线的指数α升高,湍流度形态指数β降低。表明同一高度湍流度值具有由迎风区、丘顶区向背风区增高,沿风程逐渐增大的规律,对地形部位和风程的依赖性强,与来流翻越简单地形时的特征一致。  相似文献   
9.
This paper investigates the dynamic response of an axially loaded Timoshenko beam coupled with a multilayered transversely isotropic (TI) half-space subjected to a moving load. An axial force induced by the thermal expansion is taken into account in the Timoshenko beam. The half-space considers the alternate distribution of an arbitrary number of TI elastic and poroelastic layers to model foundation soils with different properties and moisture conditions. To solve the governing equations, Fourier transform is adopted. The stratified foundation is formulated by extending an “adapted stiffness matrix method” to a more general scenario with an arbitrary number of layers. The beam is then coupled with the foundation to derive solutions to the system in the frequency-wavenumber domain. The final results in the time-spatial domain are recovered by the inverse Fourier transform. After confirming the accuracy of the method in this study, the influences of the pore water existence, the transverse isotropy of different parameters, and the axial force are investigated. It can be observed that the effect of pore water existence on the maximum beam deflection can reach 22% in this study. The transverse isotropy of the elastic and shear moduli influences the critical speed of the beam deflection by altering the phase velocity of the first wave propagation mode of the beam-foundation system. The vertical permeability coefficient is more important than the horizontal one in determining the excess pore pressure. The rise of the beam temperature (axial force) decreases the critical speed and magnifies the vibrations.  相似文献   
10.
The 2018 typhoon season in the western North Pacific(WNP) was highly active, with 26 named tropical cyclones(TCs) from June to November, which exceeded the climatological mean(22) and was the second busiest season over the past twenty years. More TCs formed in the eastern region of the WNP and the northern region of the South China Sea(SCS). More TCs took the northeast quadrant in the WNP, recurving from northwestward to northward and causing heavy damages in China's Mainland(69.73 billion yuan) in 2018. Multiscale climate variability is conducive to an active season via an enhanced monsoon trough and a weakened subtropical high in the WNP. The large-scale backgrounds in 2018 showed a favorable environment for TCs established by a developing central Pacific(CP) El Ni?o and positive Pacific meridional mode(PMM)episode on interannual timescales. The tropical central Pacific(TCP) SST forcing exhibits primary control on TCs in the WNP and large-scale circulations, which are insensitive to the PMM. During CP El Ni?o years, anomalous convection associated with the TCP warming leads to significantly increased anomalous cyclonic circulation in the WNP because of a Gill-type Rossby wave response. As a result, the weakened subtropical high and enhanced monsoon trough shift eastward and northward, which favor TC genesis and development. Although such increased TC activity in 2018 might be slightly suppressed by interdecadal climate variability, it was mostly attributed to the favorable interannual background. In addition, high-frequency climate signals,such as intraseasonal oscillations(ISOs) and synoptic-scale disturbances(SSDs), interacted with the enhanced monsoon trough and strongly modulated regional TC genesis and development in 2018.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号